ON THE NUMBER OF n-ISOGENIES OF ELLIPTIC CURVES OVER NUMBER FIELDS

نویسندگان

  • Miljen Mikić
  • Filip Najman
  • F. NAJMAN
چکیده

We find the number of elliptic curves with a cyclic isogeny of degree n over various number fields by studying the modular curves X0(n). We show that for n = 14, 15, 20, 21, 49 there exist infinitely many quartic fields K such that #Y0(n)(Q) 6= #Y0(n)(K) < ∞. In the case n = 27 we prove that there are infinitely many sextic fields such that #Y0(n)(Q) 6= #Y0(n)(K) < ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

Isogenies of Supersingular Elliptic Curves over Finite Fields and Operations in Elliptic Cohomology

In this paper we investigate stable operations in supersingular elliptic cohomology using isogenies of supersingular elliptic curves over nite elds. Our main results provide a framework in which we give a conceptually simple new proof of an elliptic cohomology version of the Morava change of rings theorem and also gives models for explicit stable operations in terms of isogenies and morphisms i...

متن کامل

Elliptic Curves over Finite Fields

In this chapter, we study elliptic curves defined over finite fields. Our discussion will include the Weil conjectures for elliptic curves, criteria for supersingularity and a description of the possible groups arising as E(Fq). We shall use basic algebraic geometry of elliptic curves. Specifically, we shall need the notion and properties of isogenies of elliptic curves and of the Weil pairing....

متن کامل

Isogenies on Edwards and Huff curves

Isogenies of elliptic curves over finite fields have been well-studied, in part because there are several cryptographic applications. Using Vélu’s formula, isogenies can be constructed explicitly given their kernel. Vélu’s formula applies to elliptic curves given by a Weierstrass equation. In this paper we show how to similarly construct isogenies on Edwards curves and Huff curves. Edwards and ...

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014